Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19224, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932280

RESUMO

Ornithischian dinosaurs exhibited a diversity of ecologies, locomotory modes, and social structures, making them an ideal clade in which to study the evolution of neuroanatomy and behaviour. Here, we present a 3D digital reconstruction of the endocranial spaces of the latest Cretaceous neornithischian Thescelosaurus neglectus, in order to interpret the neuroanatomy and paleobiology of one of the last surviving non-avian dinosaurs. Results demonstrate that the brain of Thescelosaurus was relatively small compared to most other neornithischians, instead suggesting cognitive capabilities within the range of extant reptiles. Other traits include a narrow hearing range, with limited ability to distinguish high frequencies, paired with unusually well-developed olfactory lobes and anterior semicircular canals, indicating acute olfaction and vestibular sensitivity. This character combination, in conjunction with features of the postcranial anatomy, is consistent with specializations for burrowing behaviours in the clade, as evidenced by trace and skeletal fossil evidence in earlier-diverging thescelosaurids, although whether they reflect ecological adaptations or phylogenetic inheritance in T. neglectus itself is unclear. Nonetheless, our results provide the first evidence of neurological specializations to burrowing identified within Ornithischia, and non-avian dinosaurs more generally, expanding the range of ecological adaptations recognized within this major clade.


Assuntos
Evolução Biológica , Dinossauros , Animais , Filogenia , Dinossauros/anatomia & histologia , Neuroanatomia , Encéfalo/anatomia & histologia , Fósseis
2.
PLoS One ; 18(6): e0286042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37285376

RESUMO

Intensifying macrovertebrate reconnaissance together with refined age-dating of mid-Cretaceous assemblages in recent decades is producing a more nuanced understanding of the impact of the Cretaceous Thermal Maximum on terrestrial ecosystems. Here we report discovery of a new early-diverging ornithopod, Iani smithi gen. et sp. nov., from the Cenomanian-age lower Mussentuchit Member, Cedar Mountain Formation of Utah, USA. The single known specimen of this species (NCSM 29373) includes a well-preserved, disarticulated skull, partial axial column, and portions of the appendicular skeleton. Apomorphic traits are concentrated on the frontal, squamosal, braincase, and premaxilla, including the presence of three premaxillary teeth. Phylogenetic analyses using parsimony and Bayesian inference posit Iani as a North American rhabdodontomorph based on the presence of enlarged, spatulate teeth bearing up to 12 secondary ridges, maxillary teeth lacking a primary ridge, a laterally depressed maxillary process of the jugal, and a posttemporal foramen restricted to the squamosal, among other features. Prior to this discovery, neornithischian paleobiodiversity in the Mussentuchit Member was based primarily on isolated teeth, with only the hadrosauroid Eolambia caroljonesa named from macrovertebrate remains. Documentation of a possible rhabdodontomorph in this assemblage, along with published reports of an as-of-yet undescribed thescelosaurid, and fragmentary remains of ankylosaurians and ceratopsians confirms a minimum of five, cohabiting neornithischian clades in earliest Late Cretaceous terrestrial ecosystems of North America. Due to poor preservation and exploration of Turonian-Santonian assemblages, the timing of rhabdodontomorph extirpation in the Western Interior Basin is, as of yet, unclear. However, Iani documents survival of all three major clades of Early Cretaceous neornithischians (Thescelosauridae, Rhabdodontomorpha, and Ankylopollexia) into the dawn of the Late Cretaceous of North America.


Assuntos
Dinossauros , Fósseis , Animais , Filogenia , Teorema de Bayes , Ecossistema , Crânio/anatomia & histologia , América do Norte , Dinossauros/anatomia & histologia , Bochecha
3.
Biology (Basel) ; 12(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36829540

RESUMO

Biomolecules preserved in deep time have potential to shed light on major evolutionary questions, driving the search for new and more rigorous methods to detect them. Despite the increasing body of evidence from a wide variety of new, high resolution/high sensitivity analytical techniques, this research is commonly met with skepticism, as the long standing dogma persists that such preservation in very deep time (>1 Ma) is unlikely. The Late Cretaceous dinosaur Tyrannosaurus rex (MOR 1125) has been shown, through multiple biochemical studies, to preserve original bone chemistry. Here, we provide additional, independent support that deep time bimolecular preservation is possible. We use synchrotron X-ray fluorescence imaging (XRF) and X-ray absorption spectroscopy (XAS) to investigate a section from the femur of this dinosaur, and demonstrate preservation of elements (S, Ca, and Zn) associated with bone remodeling and redeposition. We then compare these data to the bone of an extant dinosaur (bird), as well as a second non-avian dinosaur, Tenontosaurus tilletti (OMNH 34784) that did not preserve any sign of original biochemistry. Our data indicate that MOR 1125 bone cortices have similar bone elemental distributions to that of an extant bird, which supports preservation of original endogenous chemistry in this specimen.

4.
Anat Rec (Hoboken) ; 306(7): 1880-1895, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36151605

RESUMO

The geographic ranges in which species live is a function of many factors underlying ecological and evolutionary contingencies. Observing the geographic range of an individual species provides valuable information about these historical contingencies for a lineage, determining the distribution of many distantly related species in tandem provides information about large-scale constraints on evolutionary and ecological processes generally. We present a linear regression method that allows for the discrimination of various hypothetical biogeographical models for determining which landscape distributional pattern best matches data from the fossil record. The linear regression models used in the discrimination rely on geodesic distances between sampling sites (typically geologic formations) as the independent variable and three possible dependent variables: Dice/Sorensen similarity; Euclidean distance; and phylogenetic community dissimilarity. Both the similarity and distance measures are useful for full-community analyses without evolutionary information, whereas the phylogenetic community dissimilarity requires phylogenetic data. Importantly, the discrimination method uses linear regression residual error to provide relative measures of support for each biogeographical model tested, not absolute answers or p-values. When applied to a recently published dataset of Campanian pollen, we find evidence that supports two plant communities separated by a transitional zone of unknown size. A similar case study of ceratopsid dinosaurs using phylogenetic community dissimilarity provided no evidence of a biogeographical pattern, but this case study suffers from a lack of data to accurately discriminate and/or too much temporal mixing. Future research aiming to reconstruct the distribution of organisms across a landscape has a statistical-based method for determining what biogeographic distributional model best matches the available data.


Assuntos
Evolução Biológica , Dinossauros , Animais , Filogenia , Fósseis , Modelos Estatísticos
5.
Anat Rec (Hoboken) ; 306(7): 1864-1879, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36193654

RESUMO

Paleopathological diagnoses provide key information on the macroevolutionary origin of disease as well as behavioral and physiological inferences that are inaccessible via direct observation of extinct organisms. Here we describe the external gross morphology and internal architecture of a pathologic right second metatarsal (MMNS VP-6332) of a large-bodied ornithomimid (~432 kg) from the Santonian (Upper Cretaceous) Eutaw Formation in Mississippi, using a combination of X-ray computed microtomography (microCT) and petrographic histological analyses. X-ray microCT imaging and histopathologic features are consistent with multiple complete, oblique to comminuted, minimally displaced mid-diaphyseal cortical fractures that produce a "butterfly" fragment fracture pattern, and secondary osteomyelitis with a bone fistula formation. We interpret this as evidence of blunt force trauma to the foot that could have resulted from intra- or interspecific competition or predator-prey interaction, and probably impaired the function of the metatarsal as a weight-bearing element until the animal's death. Of particular interest is the apparent decoupling of endosteal and periosteal pathological bone deposition in MMNS VP-6332, which produces transverse sections exhibiting homogenously thick endosteal pathological bone in the absence of localized periosteal reactive bone. These distribution and depositional patterns are used as criteria for ruling out a pathological origin in favor of a reproductive one for unusual endosteal bone in fossil specimens. On the basis of MMNS VP-6332, we suggest caution in their use to substantiate a medullary bone identification in extinct archosaurians.


Assuntos
Fraturas Ósseas , Osteomielite , Animais , Fósseis , Osso e Ossos , Fraturas Ósseas/diagnóstico por imagem , Microtomografia por Raio-X , Osteomielite/diagnóstico por imagem
6.
Biol Lett ; 18(12): 20220404, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36475422

RESUMO

Ankylosaurid dinosaurs were heavily armoured herbivores with tails modified into club-like weapons. These tail clubs have widely been considered defensive adaptations wielded against predatory theropod dinosaurs. Here we argue instead that ankylosaurid tail clubs were sexually selected structures used primarily for intraspecific combat. We found pathological osteoderms (armour plates) in the holotype specimen of Zuul crurivastator, which are localized to the flanks in the hip region rather than distributed randomly across the body, consistent with injuries inflicted by lateral tail-swinging and ritualized combat. We failed to find convincing evidence for predation as a key selective pressure in the evolution of the tail club. High variation in tail club size through time, and delayed ontogenetic growth of the tail club further support the sexual selection hypothesis. There is little doubt that the tail club could have been used in defence when needed, but our results suggest that sexual selection drove the evolution of this impressive weapon. This changes the prevailing view of ankylosaurs, suggesting they were behaviorally complex animals that likely engaged in ritualized combat for social dominance as in other ornithischian dinosaurs and mammals.


Assuntos
Dinossauros , Animais , Mamíferos
7.
PLoS One ; 17(10): e0266648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260601

RESUMO

Reconstructing the evolution, diversity, and paleobiogeography of North America's Late Cretaceous dinosaur assemblages require spatiotemporally contiguous data; however, there remains a spatial and temporal disparity in dinosaur data on the continent. The rarity of vertebrate-bearing sedimentary deposits representing Turonian-Santonian ecosystems, and the relatively sparse record of dinosaurs from the eastern portion of the continent, present persistent challenges for studies of North American dinosaur evolution. Here we describe an assemblage of ornithomimosaurian materials from the Santonian Eutaw Formation of Mississippi. Morphological data coupled with osteohistological growth markers suggest the presence of two taxa of different body sizes, including one of the largest ornithomimosaurians known worldwide. The regression predicts a femoral circumference and a body mass of the Eutaw individuals similar to or greater than that of large-bodied ornithomimosaurs, Beishanlong grandis, and Gallimimus bullatus. The paleoosteohistology of MMNS VP-6332 demonstrates that the individual was at least ten years of age (similar to B. grandis [~375 kg, 13-14 years old at death]). Additional pedal elements share some intriguing features with ornithomimosaurs, yet suggest a larger-body size closer to Deinocheirus mirificus. The presence of a large-bodied ornithomimosaur in this region during this time is consistent with the relatively recent discoveries of early-diverging, large-bodied ornithomimosaurs from mid-Cretaceous strata of Laurasia (Arkansaurus fridayi and B. grandis). The smaller Eutaw taxon is represented by a tibia preserving seven growth cycles, with osteohistological indicators of decreasing growth, yet belongs to an individual approaching somatic maturity, suggesting the co-existence of medium- and large-bodied ornithomimosaur taxa during the Late Cretaceous Santonian of North America. The Eutaw ornithomimosaur materials provide key information on the diversity and distribution of North American ornithomimosaurs and Appalachian dinosaurs and fit with broader evidence of multiple cohabiting species of ornithomimosaurian dinosaurs in Late Cretaceous ecosystems of Laurasia.


Assuntos
Dinossauros , Gafanhotos , Animais , Fósseis , Ecossistema , Dinossauros/anatomia & histologia , América do Norte , Região dos Apalaches
8.
PeerJ ; 10: e12775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35578672

RESUMO

Double tooth pathologies are important indicators of trauma, disease, diet, and feeding biomechanics, and are widely documented in mammals. However, diagnosis of double tooth pathologies in extinct non-mammalian vertebrates is complicated by several compounding factors including: a lack of shared terminology reflecting shared etiology, inconsistencies in definitions and key features within and outside of mammals (e.g., gemination, fusion, twinning, concrescence); differences in tooth morphology, heterodonty, regeneration, and implantation between mammals and non-mammalian vertebrates; and the unmet need for diagnostic criteria that can be applied to isolated teeth, which are common in the fossil record. Here we report on double tooth pathologies in the lamniform and carcharhiniform Cenozoic sharks Otodus megalodon (NCSM 33639) and Carcharhinus leucas (NCSM 33640, 33641). All three teeth bear a singular bifid crown with mirrored halves and abnormal internal microstructure-a single, bifurcating pulp cavity in C. leucas and a more than tripling of vessels in O. megalodon (from two to seven main ascending canals). We identify these abnormalities as likely examples of gemination due to their symmetry, which rules out fusion of tooth buds in one tooth file in different developmental stages in polyphyodont taxa; however, we note that incomplete forms of mesiodistal tooth fusion can be morphologically indistinguishable from gemination, and thus fusion cannot be rejected. We further compile and recategorize, when possible, the diversity of tooth pathologies in sharks. The identification of double tooth pathologies in O. megalodon and C. leucas has paleobiological implications. Such pathologies in sharks are largely hypothesized to stem from trauma to developing tooth buds. Carcharhinus leucas is known to feed on prey documented to cause feeding-related oral traumas (e.g., rays, sawfish, spiny fish, and sea urchins). However, O. megalodon, is considered to have largely fed on marine mammals, and perhaps turtles and/or fish, raising the possibility that the dietary diversity of this species is, as of yet, underappreciated. The genetic underpinnings of tooth morphogenesis and regeneration is highly conserved throughout vertebrate evolution, suggesting a homologous framework can be established. However, more research is needed to link developmental, paleobiological, and/or paleoenvironmental factors to gemination/fusion in polyphyodont taxa. We argue that the definitions and diagnostic criteria for dental pathologies in vertebrates require standardization in order to advance macroevolutionary studies of feeding trauma in deep time.


Assuntos
Dentes Fusionados , Tubarões , Dente , Animais , Dente/anatomia & histologia , Vertebrados , Tubarões/anatomia & histologia , Peixes , Mamíferos
9.
Science ; 375(6578): eabj5976, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050649

RESUMO

Schroeder et al. (Reports, 26 February 2021, p. 941) reported a size gap among predatory dinosaur species. We argue that the supporting dataset is skewed toward Late Cretaceous North America and that the gap was likely absent during other intervals in most geographic regions. We urge broader consideration of this hypothesis, with quantitative evaluation of preservational and dataset biases.


Assuntos
Dinossauros , Animais , América do Norte , Comportamento Predatório
10.
PLoS One ; 16(9): e0257913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34591927

RESUMO

Beipiaosaurus inexpectus, from the Lower Cretaceous Yixian Formation (Sihetun locality, near Beipiao), Liaoning, China, is a key taxon for understanding the early evolution of therizinosaurians. Since initial publication in 1999, only the cranial elements of this taxon have been described in detail. Here we present a detailed description of the postcranial skeletal anatomy of the holotype specimen of B. inexpectus, including two never before described dorsal vertebrae from the anterior half of the series. Based on these observations, and comparisons with the postcranial skeleton of therizinosaurian taxa named since the most recent diagnosis, we revised the diagnostic features for B. inexpectus adding three new possible autapomorphies (PII-3 shorter than PIII-4, subequal length of the pre- and postacetabular portions of the ilium, and equidimensional pubic peduncle of ilium). Additionally, we also propose three possible synapomorphies for more inclusive taxa (Therizinosauroidea and Therizinosauridae) and discuss implications for evolutionary trends within Therizinosauria. The newly acquired data from the postcranial osteology of the holotype specimen of B. inexpectus sheds light on our understanding of postcranial skeletal evolution and identification of therizinosaurians.


Assuntos
Dinossauros/classificação , Fósseis/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Animais , Evolução Biológica , China , Dinossauros/anatomia & histologia , Osteologia
11.
PeerJ ; 9: e10948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854833

RESUMO

The "mid-Cretaceous" (~125-80 Ma) was punctuated by major plate-tectonic upheavals resulting in widespread volcanism, mountain-building, eustatic sea-level changes, and climatic shifts that together had a profound impact on terrestrial biotic assemblages. Paleontological evidence suggests terrestrial ecosystems underwent a major restructuring during this interval, yet the pace and pattern are poorly constrained. Current impediments to piecing together the geologic and biological history of the "mid-Cretaceous" include a relative paucity of terrestrial outcrop stemming from this time interval, coupled with a historical understudy of fragmentary strata. In the Western Interior of North America, sedimentary strata of the Turonian-Santonian stages are emerging as key sources of data for refining the timing of ecosystem transformation during the transition from the late-Early to early-Late Cretaceous. In particular, the Moreno Hill Formation (Zuni Basin, New Mexico) is especially important for detailing the timing of the rise of iconic Late Cretaceous vertebrate faunas. This study presents the first systematic geochronological framework for key strata within the Moreno Hill Formation. Based on the double-dating of (U-Pb) detrital zircons, via CA-TIMS and LA-ICP-MS, we interpret two distinct depositional phases of the Moreno Hill Formation (initial deposition after 90.9 Ma (middle Turonian) and subsequent deposition after 88.6 Ma (early Coniacian)), younger than previously postulated based on correlations with marine biostratigraphy. Sediment and the co-occurring youthful subset of zircons are sourced from the southwestern Cordilleran Arc and Mogollon Highlands, which fed into the landward portion of the Gallup Delta (the Moreno Hill Formation) via northeasterly flowing channel complexes. This work greatly strengthens linkages to other early Late Cretaceous strata across the Western Interior.

12.
J Anat ; 238(6): 1296-1311, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398875

RESUMO

The ability to determine the sex of extinct dinosaurs by examining the bones they leave behind would revolutionize our understanding of their paleobiology; however, to date, definitive sex-specific skeletal traits remain elusive or controversial. Although living dinosaurs (i.e., extant birds) exhibit a sex-specific tissue called medullary bone that is unique to females, the confident identification of this tissue in non-avian archosaurs has proven a challenge. Tracing the evolution of medullary bone is complicated by existing variation of medullary bone tissues in living species; hypotheses that medullary bone structure or chemistry varied during its evolution; and a lack of studies aimed at distinguishing medullary bone from other types of endosteal tissues with which it shares microstructural and developmental characteristics, such as pathological tissues. A recent study attempted to capitalize on the molecular signature of medullary bone, which, in living birds, contains specific markers such as the sulfated glycosaminoglycan keratan sulfate, to support the proposed identification of medullary bone of a non-avian dinosaur specimen (Tyrannosaurus rex MOR 1125). Purported medullary bone samples of MOR 1125 reacted positively to histochemical analyses and the single pathological control tested (avian osteopetrosis) did not, suggesting the presence of keratan sulfate might serve to definitively discriminate these tissues for future studies. To further test these results, we sampled 20 avian bone pathologies of various etiologies (18 species), and several MB samples. Our new data universally support keratan sulfate as a reliable marker of medullary bone in birds. However, we also find that reactivity varies among pathological bone tissues, with reactivity in some pathologies indistinguishable from MB. In the current sample, some pathologies comprised of chondroid bone (often a major constituent of skeletal pathologies and developing fracture calluses in vertebrates) contain keratan sulfate. We note that beyond chemistry, chondroid bone shares many characteristics with medullary bone (fibrous matrix, numerous and large cell lacunae, potential endosteal origin, trabecular architecture) and medullary bone has even been considered by some to be a type of chondroid bone. Our results suggest that the presence of keratan sulfate is not exclusive evidence for MB, but rather must be used as one in a suite of criteria available for identifying medullary bone (and thus gravid females) in non-avian dinosaur specimens. Future studies should investigate whether there are definite chemical or microstructural differences between medullary bone and reactive chondroid bone that can discriminate these tissues.


Assuntos
Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis , Sulfato de Ceratano/metabolismo , Animais , Evolução Biológica , Osso e Ossos/metabolismo , Dinossauros/metabolismo
13.
PeerJ ; 8: e9918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32999766

RESUMO

Dietary habits in extinct species cannot be directly observed; thus, in the absence of extraordinary evidence, they must be reconstructed with a combination of morphological proxies. Such proxies often include information on dental organization and function such as tooth formation time and tooth replacement rate. In extinct organisms, tooth formation times and tooth replacement rate are calculated, in part via extrapolation of the space between incremental lines in dental tissues representing daily growth (von Ebner Line Increment Width; VEIW). However, to date, little work has been conducted testing assumptions about the primary data underpinning these calculations, specifically, the potential impact of differential sampling and data extrapolation protocols. To address this, we tested a variety of intradental, intramandibular, and ontogentic sampling effects on calculations of mean VEIW, tooth formation times, and replacement rates using histological sections and CT reconstructions of a growth series of three specimens of the extant archosaurian Alligator mississippiensis. We find transect position within the tooth and transect orientation with respect to von Ebner lines to have the greatest impact on calculations of mean VEIW-a maximum number of VEIW measurements should be made as near to the central axis (CA) as possible. Measuring in regions away from the central axis can reduce mean VEIW by up to 36%, causing inflated calculations of tooth formation time. We find little demonstrable impact to calculations of mean VEIW from the practice of subsampling along a transect, or from using mean VEIW derived from one portion of the dentition to extrapolate for other regions of the dentition. Subsampling along transects contributes only minor variations in mean VEIW (<12%) that are dwarfed by the standard deviation (SD). Moreover, variation in VEIW with distance from the pulp cavity likely reflects idiosyncratic patterns related to life history, which are difficult to control for; however, we recommend increasing the number of VEIW measured to minimize this effect. Our data reveal only a weak correlation between mean VEIW and body length, suggesting minimal ontogenetic impacts. Finally, we provide a relative SD of mean VEIW for Alligator of 29.94%, which can be used by researchers to create data-driven error bars for tooth formation times and replacement rates in fossil taxa with small sample sizes. We caution that small differences in mean VEIW calculations resulting from non-standardized sampling protocols, especially in a comparative context, will produce inflated error in tooth formation time estimations that intensify with crown height. The same holds true for applications of our relative SD to calculations of tooth formation time in extinct taxa, which produce highly variable maximum and minimum estimates in large-toothed taxa (e.g., 718-1,331 days in Tyrannosaurus).

14.
Proc Natl Acad Sci U S A ; 117(19): 10422-10428, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32312812

RESUMO

Major evolutionary transitions, in which animals develop new body plans and adapt to dramatically new habitats and lifestyles, have punctuated the history of life. The origin of cetaceans from land-living mammals is among the most famous of these events. Much earlier, during the Mesozoic Era, many reptile groups also moved from land to water, but these transitions are more poorly understood. We use computed tomography to study changes in the inner ear vestibular system, involved in sensing balance and equilibrium, as one of these groups, extinct crocodile relatives called thalattosuchians, transitioned from terrestrial ancestors into pelagic (open ocean) swimmers. We find that the morphology of the vestibular system corresponds to habitat, with pelagic thalattosuchians exhibiting a more compact labyrinth with wider semicircular canal diameters and an enlarged vestibule, reminiscent of modified and miniaturized labyrinths of other marine reptiles and cetaceans. Pelagic thalattosuchians with modified inner ears were the culmination of an evolutionary trend with a long semiaquatic phase, and their pelagic vestibular systems appeared after the first changes to the postcranial skeleton that enhanced their ability to swim. This is strikingly different from cetaceans, which miniaturized their labyrinths soon after entering the water, without a prolonged semiaquatic stage. Thus, thalattosuchians and cetaceans became secondarily aquatic in different ways and at different paces, showing that there are different routes for the same type of transition.


Assuntos
Adaptação Biológica/fisiologia , Orelha Interna/anatomia & histologia , Orelha Interna/fisiologia , Adaptação Biológica/genética , Jacarés e Crocodilos/anatomia & histologia , Animais , Evolução Biológica , Cetáceos/anatomia & histologia , Ecossistema , Extinção Biológica , Substância Cinzenta , Filogenia , Canais Semicirculares , Natação , Tomografia Computadorizada por Raios X/métodos , Vestíbulo do Labirinto/anatomia & histologia , Água
15.
Curr Biol ; 30(11): 2026-2036.e3, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32330422

RESUMO

Relative brain sizes in birds can rival those of primates, but large-scale patterns and drivers of avian brain evolution remain elusive. Here, we explore the evolution of the fundamental brain-body scaling relationship across the origin and evolution of birds. Using a comprehensive dataset sampling> 2,000 modern birds, fossil birds, and theropod dinosaurs, we infer patterns of brain-body co-variation in deep time. Our study confirms that no significant increase in relative brain size accompanied the trend toward miniaturization or evolution of flight during the theropod-bird transition. Critically, however, theropods and basal birds show weaker integration between brain size and body size, allowing for rapid changes in the brain-body relationship that set the stage for dramatic shifts in early crown birds. We infer that major shifts occurred rapidly in the aftermath of the Cretaceous-Paleogene mass extinction within Neoaves, in which multiple clades achieved higher relative brain sizes because of a reduction in body size. Parrots and corvids achieved the largest brains observed in birds via markedly different patterns. Parrots primarily reduced their body size, whereas corvids increased body and brain size simultaneously (with rates of brain size evolution outpacing rates of body size evolution). Collectively, these patterns suggest that an early adaptive radiation in brain size laid the foundation for subsequent selection and stabilization.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Aves/genética , Encéfalo/anatomia & histologia , Animais , Tamanho do Órgão
16.
Sci Adv ; 6(1): eaax6250, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911944

RESUMO

Despite its iconic status as the king of dinosaurs, Tyrannosaurus rex biology is incompletely understood. Here, we examine femur and tibia bone microstructure from two half-grown T. rex specimens, permitting the assessments of age, growth rate, and maturity necessary for investigating the early life history of this giant theropod. Osteohistology reveals these were immature individuals 13 to 15 years of age, exhibiting growth rates similar to extant birds and mammals, and that annual growth was dependent on resource abundance. Together, our results support the synonomization of "Nanotyrannus" into Tyrannosaurus and fail to support the hypothesized presence of a sympatric tyrannosaurid species of markedly smaller adult body size. Our independent data contribute to mounting evidence for a rapid shift in body size associated with ontogenetic niche partitioning late in T. rex ontogeny and suggest that this species singularly exploited mid- to large-sized theropod niches at the end of the Cretaceous.


Assuntos
Dinossauros/anatomia & histologia , Fêmur/ultraestrutura , Fósseis/ultraestrutura , Tíbia/ultraestrutura , Animais , Tamanho Corporal , Osso e Ossos/ultraestrutura , Dente/ultraestrutura
17.
Anat Rec (Hoboken) ; 303(4): 988-998, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30835954

RESUMO

The unusual clubbed tails of glyptodonts among mammals and ankylosaurines among dinosaurs most likely functioned as weapons of intraspecific combat or interspecific defense and are characterized by stiffening of the distal tail and, in some taxa, expansion of the distal tail tip. Although similarities in tail weaponry have been noted as a potential example of convergent evolution, this hypothesis has not been tested quantitatively, particularly with metrics that can distinguish convergence from long-term stasis, assess the relative strength of convergence, and identify potential constraints in the appearance of traits during the stepwise, independent evolution of these structures. Using recently developed metrics of convergence within a phylomorphospace framework, we document that convergence accounts for over 80% of the morphological evolution in traits associated with tail weaponry in ankylosaurs and glyptodonts. In addition, we find that ankylosaurs and glyptodonts shared an independently derived, yet constrained progression of traits correlated with the presence of a tail club, including stiffening of the distal tail as a precedent to expansion of the tail tip in both clades. Despite differences in the anatomical construction of the tail club linked to lineage-specific historical contingency, these lineages experienced pronounced, quantifiable convergent evolution, supporting hypotheses of functional constraints and shared selective pressures on the evolution of these distinctive weapons. Anat Rec, 303:988-998, 2020. © 2019 Wiley Periodicals, Inc.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis , Cauda/anatomia & histologia , Animais , Comportamento Animal , Dinossauros/fisiologia , Fenótipo , Filogenia , Cauda/fisiologia
18.
Curr Biol ; 30(1): 158-168.e4, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31813611

RESUMO

The importance of adaptation [1-4] versus organizational constraints [5-7] in shaping common macroevolutionary trends remains unclear [8]. The fossil record is key to this problem, as it provides data on repetitive trait evolution between lineages [4, 8]. However, quantitative analyses investigating these dynamics with fossil data are rare [8]. Herbivory evolved multiple times within Mesozoic dinosaurs [9, 10], allowing analysis of common phenotypic responses to dietary evolution. Whereas repeated patterns of character acquisition [9] and functional changes [11-13] are observed between some herbivorous dinosaur clades, biomechanical studies resolve significant differences between morphologically similar taxa [12-14]. However, previous biomechanical analyses have not accounted for phylogenetic non-independence (e.g., [13-16]) or been restricted to individual clades (e.g., [11, 12, 16]). Here, we use multivariate analysis of biomechanical characters, within a robust phylogenetic context, to investigate functional pathways to herbivory in a large sample of non-avian dinosaurs. Results demonstrate multiple solutions to herbivory. Notably, two fundamentally different modes are observed to evolve independently multiple times, with morphofunctional changes in the skull co-varying with digestive strategy. These modes distinguish between gut-processing sauropodomorphs and theropods tending toward gracile crania and low bite forces and ornithischian taxa exhibiting character complexes associated with extensive oral processing. Although convergence within these subsets of taxa is common, it is not observed between them due to functional constraints imposed during the early evolution of each group. This highlights the hierarchical nature of evolution, with adaptation driving convergence within regions of morphospace delimited by phylogenetic contingency.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis/anatomia & histologia , Herbivoria , Animais , Dieta , Filogenia , Crânio/anatomia & histologia
19.
Ecol Evol ; 9(20): 11545-11556, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695867

RESUMO

Terrestrial tetrapods use their claws to interact with their environments in a plethora of ways. Birds in particular have developed a diversity of claw shapes since they are often not bound to terrestrial locomotion and have heterogeneous body masses ranging several orders of magnitude. Numerous previous studies have hypothesized a connection between pedal claw shape and ecological mode in birds, yet have generated conflicting results, spanning from clear ecological groupings based on claw shape to a complete overlap of ecological modes. The majority of these studies have relied on traditional morphometric arc measurements of keratinous sheaths and have variably accounted for likely confounding factors such as body mass and phylogenetic relatedness. To better address the hypothesized relationship between ecology and claw shape in birds, we collected 580 radiographs allowing visualization of the bony core and keratinous sheath shape in 21 avian orders. Geometric morphometrics was used to quantify bony core and keratinous sheath shape and was compared to results using traditional arc measurements. Neither approach significantly separates bird claws into coarse ecological categories after integrating body size and phylogenetic relatedness; however, some separation between ecological groups is evident and we find a gradual shift from the claw shape of ground-dwelling birds to those of predatory birds. Further, the bony claw core and keratinous sheath are significantly correlated, and the degree of functional integration does not differ across ecological groups. Therefore, it is likely possible to compare fossil bony cores with extant keratinous sheaths after applying corrections. Finally, traditional metrics and geometric morphometric shape are significantly, yet loosely correlated. Based on these results, future workers are encouraged to use geometric morphometric approaches to study claw geometry and account for confounding factors such as body size, phylogeny, and individual variation prior to predicting ecology in fossil taxa.

20.
Commun Biol ; 2: 64, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820466

RESUMO

To date, eco-evolutionary dynamics in the ascent of tyrannosauroids to top predator roles have been obscured by a 70-million-year gap in the North American (NA) record. Here we report discovery of the oldest Cretaceous NA tyrannosauroid, extending the lineage by ~15 million years. The new taxon-Moros intrepidus gen. et sp. nov.-is represented by a hind limb from an individual nearing skeletal maturity at 6-7 years. With a ~1.2-m limb length and 78-kg mass, M. intrepidus ranks among the smallest Cretaceous tyrannosauroids, restricting the window for rapid mass increases preceding the appearance of colossal eutyrannosaurs. Phylogenetic affinity with Asian taxa supports transcontinental interchange as the means by which iconic biotas of the terminal Cretaceous were established in NA. The unexpectedly diminutive and highly cursorial bauplan of NA's earliest Cretaceous tyrannosauroids reveals an evolutionary strategy reliant on speed and small size during their prolonged stint as marginal predators.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis , Registros/estatística & dados numéricos , Animais , Biota , Dinossauros/classificação , Membro Posterior/anatomia & histologia , Humanos , América do Norte , Paleontologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...